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Abstract
Our previous work on quantum kinematics and coherent states over finite
configuration spaces is extended: the configuration space is, as before, the
cyclic group Zn of arbitrary orders n = 2, 3, . . . , but a larger group—the non-
Abelian dihedral group Dn—is taken as its symmetry group. The corresponding
group-related coherent states are constructed and their overcompleteness is
proved. Our approach based on geometric symmetry can be used as a kinematic
framework for matrix methods in quantum chemistry of ring molecules.

PACS numbers: 03.65.Ta, 03.65.−w, 42.50.−p

1. Introduction

The mathematical arena for ordinary quantum mechanics is, due to Heisenberg’s commutation
relations, the infinite-dimensional Hilbert space. A useful model for quantum mechanics in
a Hilbert space of finite dimension n is due to Weyl [1]. Its geometric interpretation, as the
simplest quantum kinematic on a finite discrete configuration space formed by a periodic
chain of n points, was elaborated by Schwinger [2]. In [3, 4], we proposed a group theoretical
formulation of this quantum model in terms of Mackey’s quantization [5, 6]. It is based
on Mackey’s system of imprimitivity which represents a group theoretical generalization of
Heisenberg’s commutation relations.

The geometrical picture behind the group theoretical approach is the following [7]: one
has a discrete or continuous configuration space together with a geometrical symmetry group
acting transitively on it, i.e. the configuration space is a homogeneous space of the group. In
particular, Weyl’s model is based on configuration space Zn (where Zn is the cyclic group of
order n = 2, 3, . . .) with symmetry Zn acting on the periodic chain Zn by discrete translations.
In this paper, our formulation of Weyl’s model is generalized by extending the Abelian
symmetry group Zn of the periodic chain to the dihedral group Dn—the non-Abelian symmetry
group of a regular n-sided polygon.
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Coherent states belong to the most important tools in many applications of quantum
physics. They found numerous applications in quantum optics, quantum field theory,
condensed matter physics, atomic physics etc. There are various definitions and approaches
to the coherent states dependent on author and application. Our main reference is [8], where
the systems of coherent states related to Lie groups are described. The basic feature of such
systems is that they are overcomplete. As shown for instance in [9], Perelomov’s method can
be equally well applied to discrete groups. Starting with irreducible systems of imprimitivity
we shall construct irreducible sets of generalized Weyl operators, whose action on properly
chosen vacuum states will produce the resulting families of coherent states.

In section 2 after recalling Mackey’s imprimitivity theorem for finite groups [10] the
construction of systems of imprimitivity is described. Then necessary notations for the
dihedral groups are introduced in section 3. Section 4 is devoted to the construction of the two
irreducible systems of imprimitivity for Dn based on Zn, each consisting of a projection-valued
measure and an induced unitary representation. From them, the corresponding quantum
position and momentum observables are constructed in section 5. This is the starting point
for construction of the set of generalized Weyl operators and generalized coherent states
in section 6. We apply the method of paper [9], where quantization on Zn with Abelian
symmetry group Zn and the corresponding coherent states were investigated. Concluding
section 7 contains remarks concerning the replacement of the Abelian cyclic symmetry group
Zn by the non-Abelian dihedral group Dn as the group of motions of the configuration space
Zn. The interesting feature of our construction is the fact that, even if the group property
of the set of Weyl operators is lost, the families of coherent states still possess the required
overcompleteness property.

2. Systems of imprimitivity for finite groups

We consider the case when the configuration space M and its symmetry group G are finite.
Our configuration space will be a finite set M = {m1,m2, . . . , mn}, n = |M|. Let G be a finite
group acting transitively on M, and let H be the stability subgroup. Let L be an irreducible
unitary representation of subgroup H on Hilbert space HL.

System of imprimitivity is a pair (V, E), where E is a projection-valued measure on
configuration space G/H and V is a unitary representation of the symmetry group G such that

V(g)E(S)V(g)−1 = E(g.S) for all g ∈ G, S ⊂ G/H. (1)

In a finite-dimensional Hilbert space H = C
n the standard projection-valued measure is given

by finite sums of diagonal matrices

E(mi) := diag(0, 0, . . . , 1, . . . , 0), i = 1, 2, . . . , n. (2)

The imprimitivity theorem for finite groups has the following form [10].

Theorem. A unitary representation V of a finite group G in Hilbert space H belongs to the
imprimitivity system (V, E) with standard projection-valued measure based on G/H, if and
only if V is equivalent to an induced representation IndG

H(L) for some unitary representation
L of subgroup H. The system of imprimitivity is irreducible, if and only if L is irreducible.

Thus a unitary representation V for a system of imprimitivity is constructed directly as an
induced representation. Let G be a finite group of order r, H its subgroup of order s. Suppose
that L is a representation of subgroup H. Let us decompose the group G into left cosets

G =


r/s⋃
j=1

tj · H|tj ∈ G, t1 = e

 . (3)
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Group elements tj are arbitrarily chosen representatives of left cosets. If the dimension of
representation L is l, then the induced representation V of G is given by

(V(g))ij = L(h) if t−1
i · g · tj = h for some h ∈ H, (4)

= 0 otherwise, (5)

here (V(g))ij are l × l matrices which serve as building blocks for

V(g) = IndG
H(L) (6)

and the subscript ij denotes the position of the block in V(g).

3. Structure of dihedral groups

The dihedral group Dn, where n = 2, 3, . . . , is a non-Abelian finite group of order 2n with
the structure of a semidirect product of two cyclic groups:

Dn = Zn � Z2. (7)

It arises as the symmetry group of a regular polygon and is generated by discrete rotations and
reflections. The elements of the subgroups Z2 and Zn will be denoted as

Z2 = {+1,−1}, Zn = {e = r0, r1, . . . , rn−1}. (8)

Group operation in Z2 is multiplication, in Znri · rj = ri+j (mod n).
The multiplication law of the semidirect product (7) is determined by a fixed

homomorphism f from Z2 to the group of all automorphisms of the group Zn, f : Z2 →
Aut(Zn):

(ri, x) · (rj , y) = (ri · f (x)(rj ), x · y), x, y ∈ Z2, ri, rj ∈ Zn. (9)

Under this multiplication law, Zn is a normal subgroup. Specifically for Dn, the mapping f is
simply

f : +1 �→ Id, f : −1 �→ Inv, (10)

where Id is the identical mapping on Zn, Inv is an automorphism of Zn which maps an element
of Zn into its inverse:

Inv : rk �→ r−1
k = r−k (mod n), ri ∈ Zn. (11)

We shall need the explicit form of the multiplication law:

(ri, +1) · (rj , x) = (ri · rj , x) = (ri+j (mod n), x), (12)

(ri,−1) · (rj , x) = (
ri · r−1

j ,−x
) = (ri−j (mod n),−x). (13)

Thus the elements of Dn can be divided into two disjoint subsets.

(i) The subset {(rk, +1), k = 0, 1, . . . , n − 1} forms the subgroup isomorphic to Zn and
the elements (rk, +1) have the geometrical meaning of integral multiples of a clockwise
rotation of an n-sided regular polygon through an angle 2π/n.

(ii) The subset {(rk,−1), k = 0, 1, . . . , n − 1} consists of mirror symmetries with respect to
axes in the n-sided polygon: if n is odd, then all axes of mirror symmetries pass through
vertices of the n-sided polygon; if n is even, then only one half of mirror symmetries
have axes passing through opposite vertices, the remaining axes are symmetry axes of
two opposite sides of the polygon.



4836 P Luft et al

Summarizing, the group Dn consists of n rotation symmetries Rk = (rk, +1) and
n mirror symmetries Mk = (rk,−1) obeying the following multiplication rules (with
i, j = 0, 1, . . . , n − 1):

Ri · Rj = Ri+j (mod n), Ri · Mj = Mi+j (mod n), (14)

Mi · Rj = Mi−j (mod n), Mi · Mj = Ri−j (mod n). (15)

4. Quantization on Zn with Dn as a symmetry group

The configuration space Zn will be identified with the set of vertices of a regular n-sided
polygon. We have seen that Dn acts on Zn transitively as a group of discrete rotations and
mirror symmetries. The stability subgroup Hn of Dn is Z2 for all n; hence, we can write
Zn

∼= Dn/Z2.
The stability subgroup Z2 is independent of the order of symmetry group Dn and it has

exactly two inequivalent irreducible unitary representations, the trivial representation

T1 : Z2 → C : ±1 �→ 1, (16)

and the alternating representation

T2 : Z2 → C : +1 �→ +1, −1 �→ −1. (17)

Now the inequivalent quantum kinematics on the configuration space Zn are determined
by inequivalent systems of imprimitivity on Zn with the symmetry group Dn. We require
irreducibility of systems of imprimitivity in order that the corresponding kinematical
observables act irreducibly in the Hilbert space. There will be exactly two inequivalent
irreducible systems of imprimitivity (V1, E1) and (V2, E2) with representations induced from
irreducible unitary representations T1 and T2.

In both cases the Hilbert space H of quantum mechanics is the space of complex functions
on the configuration space Zn and it is isomorphic to n-dimensional complex vector space C

n

with standard inner product:

〈z1, z2〉 =
n−1∑
i=0

z̄1iz2i . (18)

The standard projection-valued measure E is common to both systems of imprimitivity (V1, E)

and (V2, E). It is diagonal and generated by sums of one-dimensional orthogonal projectors
on C

n of the form

E(ri) = i


i

·
· · 1 · ·

·
·

 , i = 0, 1, . . . , n − 1. (19)

Measure of an empty set in Zn is the vanishing operator on C
n; measure of the whole

configuration space is the unit operator.
In order to obtain the two irreducible systems of imprimitivity, we shall construct the

representations induced from T1 and T2 on C
n,

V1 = IndDn

Z2
(T1), V2 = IndDn

Z2
(T2). (20)
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According to (3) the symmetry group Dn is decomposed into left cosets:

Dn =
{

n−1⋃
m=0

tm · Z2|tm ∈ Dn, t0 = e

}
. (21)

In our case we have Z2 = {R0, M0}; with the choice of coset representatives tm = Rm,m =
0, 1, . . . , n − 1, we obtain the decomposition

Dn = {{R0, M0} ∪ {R1, M1} ∪ . . . ∪ {Rn−1, Mn−1}}. (22)

Matrices of induced representations are then constructed in block form: dimensions of
both representations V1 and V2 are equal to n,

dim(Vl) = |Dn|
|Z2| · dim(Tl ) = 2n

2
· 1 = n, l = 1, 2, (23)

and matrix elements (1 × 1-blocks) have the following form:

Vl (g)ij = Tl (h) if t−1
i · g · tj = h for some h ∈ Z2,

= 0 otherwise. (24)

In our case ti = Ri , so the matrix element (Vi (g))ij does not vanish if and only if

R−i (mod n) · g · Rj ∈ {R0, M0}. (25)

To construct the induced representation V1—first for the subgroup of discrete rotations
g = Rk—condition (25)

R−i (mod n) · Rk · Rj = R−i+j+k (mod n) ∈ {R0, M0} (26)

is equivalent to i = j + k (mod n); hence, matrix elements (24) of discrete rotations are

(V1(Rk))ij = δi,j+k (mod n). (27)

So the entire matrix is

V1(Rk) = k



k 1
1

·
·

1
1

1
·

·
1


. (28)

For the representation V1 of mirror symmetries g = Mk condition (25) acquires the form

R−i (mod n) · Mk · Rj = M−i−j+k (mod n) ∈ {R0, M0} ⇔ i = k − j (29)

due to (14) and (15), so the matrix elements (24) of mirror symmetries are

(V1(Mk))ij = δi,k−j (mod n). (30)
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The matrix V1(Mk) has the explicit form

V1(Mk) =



1
·

k 1
·

1
1

·
·

1


(31)

The second representation V2 is obtained similarly via (24) as the representation induced
from T2 with the result

V2(Rk) = V1(Rk), V2(Mk) = −V1(Mk). (32)

The representations V1 and V2 are unitary, reducible and inequivalent; as could be expected,
the two systems of imprimitivity differ only on reflections in Dn.

5. Quantum observables

The basic quantum observables—position and momentum operators—defining quantum
kinematics on a configuration space have natural definition if a system of imprimitivity is
given.

Classical position observable is a Borel mapping from the configuration space, in our case
from Zn, to the set of real numbers. For the classical position observable counting the points
in Zn,

f : Zn → R : rk �→ k, k = 0, 1, . . . , n − 1, (33)

the corresponding quantized position operator Q̂ is expressed in terms of the projection-valued
measure (19) as follows [7]:

Q̂ :=
n−1∑
k=0

k · E(f −1(k)) =
n−1∑
k=0

k · E(rk) = diag(0, 1, . . . , n − 1). (34)

Note that the position operator is the same for both systems of imprimitivity constructed in
the previous section, i.e. in both quantum kinematics.

In the continuous case, quantized momentum operators are obtained from unitary
representation V by means of Stone’s theorem [11]: to each one-parameter subgroup γ (t) of
a symmetry group there exists a self-adjoint operator P̂ such that

V(γ (t)) = exp(−itP̂), t ∈ R. (35)

However, this is not possible in the discrete case. One has to look for self-adjoint operators
P̂l g on C

n such that

Vl (g) = exp(−iP̂l g), l = 1, 2, g ∈ Dn. (36)

One may try to compute the operators P̂l g by inverting the exponential (36),

P̂l g = i · ln(Vl (g)), (37)

but then has to face the problem that the complex exponential is not invertible, so the operators
P̂l g will not be determined uniquely.
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Computation of functions of matrices is possible via the Lagrange–Sylvester theorem (see
the appendix). However, the spectral data needed there have their own physical importance
in quantum mechanics, so they will be determined below for the operators V1(Rk) and
V1(Mk), k = 0, 1, . . . , n − 1. Because of (32) they are applicable to the other system of
imprimitivity, too.

Let us start with discrete rotations. The eigenvalues of operator V1(R1) are solutions of
the secular equation

det(λI − V1(R1)) = 0 or λn − 1 = 0; (38)

hence, the spectrum is

σ(V1(R1)) = {
λj = e

2π ij
n

∣∣j = 0, 1, . . . , n − 1
}
. (39)

Then the eigenvalues of operators V1(Rk) are simply the powers of those of V1(R1),

σ(V1(Rk)) = σ(V1((R1)
k)) = {

λk
j = e

2π ijk

n

∣∣j = 0, 1, . . . , n − 1
}
. (40)

Similarly the spectra of operators V1(Mk) for mirror symmetries are obtained by solving

det(λI − V1(Mk)) = 0, (41)

but here two cases should be distinguished.

(i) If n is odd, then (41) becomes

(1 − λ)(λ2 − 1)
n−1

2 = 0 ⇒ σ(V1(Mk)) = {+1,−1} (42)

and the orders of eigenvalues ±1 are n±1
2 .

(ii) If n is even, then the characteristic polynomial of operator V1(Mk) depends, in addition
to dimension n, also on parameter k. At this point, we have also to distinguish if k is odd
or even. In the geometric picture, we have to distinguish if the axis of mirror symmetry
Mk passes through opposite vertices of the n-sided regular polygon (k even), or if it is an
axis of two opposite sides of the polygon (k odd). So if n is even, then (41) has following
form:

0 = (1 − λ)
n
2 +1(1 + λ)

n
2 −1 if k is even , (43)

0 = (1 − λ)
n
2 (1 + λ)

n
2 if k is odd . (44)

The spectra for both cases are the same as for odd n, but the orders of eigenvalues are
different. If k is even, the order of eigenvalue +1 is n

2 + 1, the order of eigenvalue −1 is
n
2 − 1; if k is odd, then the order of both eigenvalues is n

2 .

The evaluation of operators P̂1Rk
for discrete rotations can be done using the fact that

rotations Rk form an Abelian subgroup Zn of Dn. Thus we have simply

exp
(−îPRk

) = V1(Rk) = (V1(R1))
k = exp(−ikP̂) (45)

where P̂ = P̂1R1
can be interpreted as self-adjoint momentum operator. The spectrum (40) of

V1(R1) has n different simple eigenvalues λk = e
2π ik

n , so it remains to find the corresponding
one-dimensional spectral projectors

Pk = |k〉〈k|. (46)
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Here |k〉 are normalized eigenvectors of operator V1(R1) belonging to eigenvalues λk [4]:

|k〉 = 1√
n



λn−1
k

λn−2
k

·
·

λk

1


. (47)

Using (46), matrix elements of Pk can be written as

(Pk)lm = 1

n
λn−l

k λn−m
k = 1

n
e

2π ik(m−l)

n . (48)

Then, using (37) and (A.1) for simple eigenvalues, we have

(̂P)lm = i(ln V1(R1))lm == i
n−1∑
j=0

ln(λj )(Pj )lm; (49)

hence, matrix elements of the momentum operator are obtained:

(̂P)lm = 2π

n

1

1 − e
2π i(m−l)

n

m = l, (50)

= −π
n − 1

n
m = l. (51)

Note that this result was obtained in [9] by finite Fourier transform of the position operator.
For the analysis of operators of mirror symmetries, see the appendix. From the physical point
of view unitary operators V1,2(Mk) play the role of parity operators.

6. Coherent states parametrized by Zn × Dn

In this section, generalized coherent states will be determined for each of the two quantum
kinematics.

A family of generalized coherent states of type {�(g), |ψ0〉} in the sense of Perelomov [8]
is defined for a representation �(g) of a group G as a family of states {|ψg〉}, |ψg〉 = �(g)|ψ0〉,
where g runs over the whole group G and |ψ0〉 is the ‘vacuum’ vector.

First take quantum kinematics defined by the system of imprimitivity (V1, E). To construct
group-related coherent states of Perelomov type parametrized by (a, g) ∈ Zn × Dn, we define
generalized Weyl operators:

Ŵ1(a, g) = exp

(
2π ia

n
Q̂

)
exp(−iP̂1g) = exp

(
2π ia

n
Q̂

)
V1(g), a ∈ Zn, g ∈ Dn. (52)

Here (
exp

(
2π ia

n

)
Q̂

)
jk

= δj,k exp

(
2π iaj

n

)
,

exp

(
2π ia

n
Q̂

)
=


1

exp
(
2π ia

n

)
·

·
exp

( 2π ia(n−1)

n

)

 .

(53)
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Note that, if the system of imprimitivity is irreducible, also the set of generalized Weyl
operators defined above acts irreducibly in the Hilbert space H. Restricting g to the subgroup
Zn of discrete rotations, the unitary operators satisfy

e
2π ia

n
Q̂ eimP̂ = e

2π iam
n eimP̂ e

2π ia
n

Q̂ (54)

and operators Ŵ1(a, g) form the well-known projective unitary representation of the group
Zn × Zn, which acts irreducibly in the Hilbert space H = C

n [1, 4].
Unfortunately, if we want to derive a relation similar to (54) for operators P̂1Mk

, by
performing the same computation as for P̂ we obtain(

e
2π ia

n
Q̂ eiP̂1Mm

)
jk

= e
2π ia

n
(2m−2k)

(
eiP̂1Mm e

2π ia
n

Q̂)
jk

. (55)

Here the multiplier is k-dependent; hence, there is neither an operator equality similar to (54)
nor a projective representation property of operators Ŵ1(a, g).

To construct the system of coherent states in C
n, besides the system of operators Ŵ1(a, g)

a properly defined ‘vacuum’ vector |0〉 is needed. Then generalized coherent states of type
{Ŵ1(a, g), |0〉} are given by

|a, g〉1 = Ŵ1(a, g)|0〉, a ∈ Zn, g ∈ Dn, (56)

and |0〉 = |0, e〉1. In analogy with continuous case where the coherent states are eigenvectors
of the annihilation operator and the vacuum vector belongs to eigenvalue 0 one would like to
have a similar condition [9]:

e
2π
n

Q̂ eîP|0〉 = |0〉. (57)

But (57) cannot hold true since 1 is not an eigenvalue of the operator. So our admissible
vacuum vectors are required to satisfy (57) up to a nonzero multiplier [9]:

e
2π
n

Q̂ eîP|0〉 = λ|0〉. (58)

For n spectral values

σ
(
e

2π
n

Q̂ eîP) = {
λk = e

π(n−1)

n e
2π ik

n

∣∣k = 0, 1, . . . , n − 1
}

(59)

we obtain a system of n admissible (normalized) vacuum vectors |0〉(k) labelled by k = 0,

1, . . . , n − 1,

|0〉(k) = An


1

e
π(3−n)

n e
−2π ik

n

·
·

e
π(n−1)

n e
−2π ik(n−1)

n

 , (60)

here the j th component

(|0〉(k))j = g
(k)
j = An e

πj (j−n+2)

n e−j 2π ik
n , (61)

where j = 0, 1, . . . , n − 1 and An is the normalization constant:

An = 1√∑n−1
j=0 e

2π
n

j (j−n+2)

. (62)

Now we are able to construct n families of coherent states in the first quantum kinematics
which are labelled by parameter k. Applying (56) for Rm, we obtain(|a, Rm〉(k)

1

)
j

= (Ŵ1(a, Rm)|0〉(k))j

= (
e

2π ia
n

Q̂V̂1(Rm)|0〉(k)
)
j

= e
2π iaj

n g
(k)

j−m (mod n); (63)
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for Mm we obtain(|a, Mm〉(k)
1

)
j

= (Ŵ1(a, Mm)|0〉(k))j

= (
e

2π ia
n

Q̂V̂1(Mm)|0〉(k)
)
j

= e
2π iaj

n g
(k)

m−j (mod n). (64)

Coherent states for the second quantum mechanics with representation V2 are equivalent
to those of the first one because they differ on Mm by an unessential phase factor −1:

|a, Rm〉(k)
2 = |a, Rm〉(k)

1 , |a, Mm〉(k)
2 = −|a, Mm〉(k)

1 . (65)

7. Properties of coherent states

One of the most important properties of coherent states is their overcompleteness expressed
by a resolution of unity∑

(a,g)∈Zn×Dn

|a, g〉(k)〈a, g|(k) = ck̂I, (66)

where ck is some nonzero complex number. Let us check this property for our coherent states.
From (63) and (64) we get∑
(a,g)∈Zn×Dn

|a, g〉(k)
1,2〈a, g|(k)

1,2 =
∑

a∈Zn,m=0,...,n−1

|a, Rm〉(k)
1 〈a, Rm|(k)

1

+
∑

a∈Zn,m=0,...,n−1

|a, Mm〉(k)
1 〈a, Mm|(k)

1 . (67)

Matrix element of the first sum on the right-hand side of (67) is, due to (61) and (62),(∑
a,m

|a, Rm〉(k)
1 〈a, Rm|(k)

1

)
j l

=
∑
a,m

(|a, Rm)〉(k)
1

)
j

(〈a, Rm|(k)
1

)
l

=
∑
a,m

e
2π ia

n
(j−l)g

(k)

j−m (mod n)g
(k)

l−m (mod n) = nδj,l〈0|0〉(k) = nδj,l .

(68)

Exactly the same result is obtained for the second sum on the right-hand side of (67):(∑
a,m

|a, Mm〉(k)
1 〈a, Mm|(k)

1

)
j l

=
∑
a,m

e
2π ia

n
(j−l)g

(k)

m−j (mod n)g
(k)

m−l (mod n)

= nδj,l

∑
m

g
(k)

m−j (mod n)g
(k)

m−l (mod n) = nδj,l . (69)

So we proved that the resolution of unity is fulfilled:∑
(a,g)∈Zn×Dn

|a, g〉(k)
1,2〈a, g|(k)

1,2 = 2n̂I (70)

and this result holds for both representations V1 and V2.
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For the inner product (overlap) of two coherent states we have the formulae

〈a, Rp|b, Rq〉(k)
1,2 =

n∑
j=1

e
2π ij

n
(b−a)g

(k)

j−p (mod n)g
(k)

j−q (mod n),

p〈a, Mp|b, Mq〉(k)
1,2 =

n∑
j=1

e
2π ij

n
(b−a)g

(k)

p−j (mod n)g
(k)

q−j (mod n),

〈a, Rp|b, Mq〉(k)
1,2 =

n∑
j=1

e
2π ij

n
(b−a)g

(k)

j−p (mod n)g
(k)

q−j (mod n).

(71)

Note that the inner products yield the reproducing kernel 〈x|x ′〉 = K(x, x ′) [12].
If the system is prepared in the coherent state |a, g〉(k)

1,2, then the probability to measure

the eigenvalue j of position operator is given by
∣∣〈j |a, g〉(k)

1,2

∣∣2
. It is independent of k and is

the same in both quantum kinematics, namely,∣∣〈j |a, Rm〉(k)
1,2

∣∣2 = A2
n exp

(
2π

n
(j − m)(j − m − n + 2)

)
,

∣∣〈j |a, Mm〉(k)
1,2

∣∣2 = A2
n exp

(
2π

n
(m − j)(m − j − n + 2)

)
.

(72)

8. Concluding remarks

In this paper, we have constructed systems of imprimitivity on the finite configuration space
Zn considered as a homogeneous space of the dihedral group Dn. We have shown that there
exist two inequivalent irreducible systems of imprimitivity (V1, E) and (V2, E). Unitary
representations V1 and V2 have clear physical significance of symmetry transformations.

Using these systems of imprimitivity, we have constructed the corresponding families
of group related coherent states in the sense of Perelomov. They are connected with the
group Zn × Dn acting on the discrete phase space Zn × Zn. Unfortunately, due to (55) we
have lost the group property of the set of operators Ŵ(a, g), i.e. these operators do not form a
projective unitary representation of the group Zn× Dn. In spite of this fact for the first system of
imprimitivity n families of coherent states were obtained, generated from n admissible vacuum
vectors (61). It turned out that the coherent states for the second system of imprimitivity differ
from the first only by an unessential phase factor, i.e., they are physically equivalent. For all
n families of coherent states the overcompleteness property was demonstrated. We have also
evaluated the overlaps of pairs of coherent states in the form of finite sums (71). The only
physical difference between the two quantum kinematics can be observed in the difference
between unitary representations V1 and V2 on mirror symmetries, which have the meaning of
parity operators.

Let us note that in quantum optics, discrete phase space Zn×Zn is employed in connection
with the quantum description of phase conjugated to number operator [13]. Our approach can
also provide a suitable starting point for the approximate solution of the continuous Schrödinger
equation. In this connection, we found instructive the paper [14] on finite approximation of
continuous Weyl systems inspired by an approximation scheme due to J Schwinger [15].

Another interesting application is offered by quantum chemistry, namely Hückel’s
treatment of delocalized π -electrons and its generalizations in various kinds of molecules,
where molecular orbitals are expressed as linear combinations of atomic orbitals [16, 17]. In
this respect our approach seems especially suitable for the treatment of ring molecules with
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n equivalent carbon atoms called annulenes. In our notation, the set of atomic orbitals would
correspond to the standard basis in H = C

n and unitary representations V1 and V2 realize the
geometric symmetry transformations.
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Appendix

For computation of matrix functions the Lagrange–Sylvester theorem is useful.

Theorem [18]. Let A be an n × n matrix with spectrum σ(A) = {λ1, λ2, . . . , λs}, s � n.
Let qj be the order of eigenvalue λj , j = 1, 2, . . . , s. Let � ⊂ C be an open subset of the
complex plane such that σ(A) ⊂ �. Then the formula

f (A) =
s∑

j=1

qj −1∑
k=0

f (k)(λj )

k!
(A − λj I)

k
Pj (A.1)

holds for every function f holomorphic on �. Here Pj is the orthogonal projector onto the
subspace of C

n which is spanned by the set of all eigenvectors with eigenvalue λj :

Pj :=
s∏

l=1,l =j

λlI − A

λl − λj

. (A.2)

The formula (A.1) can be applied to equation (37) to evaluate operators P̂1g for mirror
symmetries. Since the multiplicities of spectral values ±1 have already been determined, we
have only to find the spectral projectors Pk for each representation element V1(Mk). From
equation (37)

P̂1Mk
= i · ln(V1(Mk)), (A.3)

we get, using the Lagrange–Sylvester formula (A.1) with spectrum (42), the spectral
decomposition

P̂1Mk
= i ·

q(+)−1∑
j=0

ln(j)(+1)

j !
(V1(Mk) − I)j P̂+1 + i ·

q(−)−1∑
j=0

ln(j)(−1)

j !
(V1(Mk) + I)j P̂−1, (A.4)

where q(±) are multiplicities of eigenvalues ±1. Strictly said the assumption of the Lagrange–
Sylvester formula (A.1) is not satisfied since the complex logarithm is not holomorphic on the
non-positive part of the real axis and −1 belongs to the spectrum of V1(Mk). We will express
P̂Mk

in a formal way and verify (36) using (A.1), where function exp is holomorphic.
Using formula (A.2) for the projectors projecting on q(±)-dimensional subspaces of C

n

P̂+1 = (V1(Mk) + I)

2
, P̂−1 = − (V1(Mk) − I)

2
, (A.5)

and the property

(V1(Mk) − I)(V1(Mk) + I) = (V1(Mk))
2 − I = 0̂, (A.6)
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all elements in the sum (A.4) vanish except j = 0:

P̂1Mk
= i ·

(
ln(+1)

2
(V1(Mk) + I) − ln(−1)

2
(V1(Mk) − I)

)
. (A.7)

Taking the value −π for ln(−1)

P̂1Mk
= π

2
(V1(Mk) − I); (A.8)

similar calculation leads to

P̂2Mk
= π

2
(V2(Mk) − I). (A.9)

Note that momentum operators are not uniquely determined. This is caused by the property
of exponential mapping which is not one-to-one.
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